3.371 \(\int \frac {x (d-c^2 d x^2)}{(a+b \cosh ^{-1}(c x))^{3/2}} \, dx\)

Optimal. Leaf size=241 \[ -\frac {\sqrt {\pi } d e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}-\frac {\sqrt {\pi } d e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}+\frac {2 d x (c x-1)^{3/2} (c x+1)^{3/2}}{b c \sqrt {a+b \cosh ^{-1}(c x)}} \]

[Out]

1/4*d*exp(2*a/b)*erf(2^(1/2)*(a+b*arccosh(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c^2+1/4*d*erfi(2^(1/2)
*(a+b*arccosh(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c^2/exp(2*a/b)-1/4*d*exp(4*a/b)*erf(2*(a+b*arccosh
(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/c^2-1/4*d*erfi(2*(a+b*arccosh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/c^2
/exp(4*a/b)+2*d*x*(c*x-1)^(3/2)*(c*x+1)^(3/2)/b/c/(a+b*arccosh(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.15, antiderivative size = 251, normalized size of antiderivative = 1.04, number of steps used = 17, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {5776, 5701, 3312, 3307, 2180, 2204, 2205, 5781, 5448} \[ -\frac {\sqrt {\pi } d e^{\frac {4 a}{b}} \text {Erf}\left (\frac {2 \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{\frac {2 a}{b}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}-\frac {\sqrt {\pi } d e^{-\frac {4 a}{b}} \text {Erfi}\left (\frac {2 \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {\sqrt {\frac {\pi }{2}} d e^{-\frac {2 a}{b}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}-\frac {2 d x \sqrt {c x-1} \sqrt {c x+1} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(d - c^2*d*x^2))/(a + b*ArcCosh[c*x])^(3/2),x]

[Out]

(-2*d*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(1 - c^2*x^2))/(b*c*Sqrt[a + b*ArcCosh[c*x]]) - (d*E^((4*a)/b)*Sqrt[Pi]*E
rf[(2*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c^2) + (d*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*
ArcCosh[c*x]])/Sqrt[b]])/(2*b^(3/2)*c^2) - (d*Sqrt[Pi]*Erfi[(2*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(4*b^(3/2)*
c^2*E^((4*a)/b)) + (d*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(2*b^(3/2)*c^2*E^((2*a)/b))

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5701

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Dist[(-(d1*d2))^p/c, Subst[Int[(a + b*x)^n*Sinh[x]^(2*p + 1), x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c
, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && IGtQ[p + 1/2, 0] && (GtQ[d1, 0] && LtQ[d2, 0]
)

Rule 5776

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^(n + 1))/(b*c*(n + 1)), x] + (Dist[(
f*m*(-d)^p)/(b*c*(n + 1)), Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n
+ 1), x], x] - Dist[(c*(-d)^p*(m + 2*p + 1))/(b*f*(n + 1)), Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(
p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && LtQ[n,
-1] && IGtQ[m, -3] && IGtQ[p, 0]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rubi steps

\begin {align*} \int \frac {x \left (d-c^2 d x^2\right )}{\left (a+b \cosh ^{-1}(c x)\right )^{3/2}} \, dx &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}+\frac {(2 d) \int \frac {\sqrt {-1+c x} \sqrt {1+c x}}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx}{b c}-\frac {(8 c d) \int \frac {x^2 \sqrt {-1+c x} \sqrt {1+c x}}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx}{b}\\ &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}+\frac {(2 d) \operatorname {Subst}\left (\int \frac {\sinh ^2(x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^2}-\frac {(8 d) \operatorname {Subst}\left (\int \frac {\cosh ^2(x) \sinh ^2(x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}-\frac {(2 d) \operatorname {Subst}\left (\int \left (\frac {1}{2 \sqrt {a+b x}}-\frac {\cosh (2 x)}{2 \sqrt {a+b x}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{b c^2}-\frac {(8 d) \operatorname {Subst}\left (\int \left (-\frac {1}{8 \sqrt {a+b x}}+\frac {\cosh (4 x)}{8 \sqrt {a+b x}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}+\frac {d \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^2}-\frac {d \operatorname {Subst}\left (\int \frac {\cosh (4 x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}-\frac {d \operatorname {Subst}\left (\int \frac {e^{-4 x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{2 b c^2}+\frac {d \operatorname {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{2 b c^2}+\frac {d \operatorname {Subst}\left (\int \frac {e^{2 x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{2 b c^2}-\frac {d \operatorname {Subst}\left (\int \frac {e^{4 x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{2 b c^2}\\ &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}-\frac {d \operatorname {Subst}\left (\int e^{\frac {4 a}{b}-\frac {4 x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{b^2 c^2}+\frac {d \operatorname {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{b^2 c^2}+\frac {d \operatorname {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{b^2 c^2}-\frac {d \operatorname {Subst}\left (\int e^{-\frac {4 a}{b}+\frac {4 x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{b^2 c^2}\\ &=-\frac {2 d x \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}{b c \sqrt {a+b \cosh ^{-1}(c x)}}-\frac {d e^{\frac {4 a}{b}} \sqrt {\pi } \text {erf}\left (\frac {2 \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {d e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}-\frac {d e^{-\frac {4 a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {2 \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^2}+\frac {d e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.27, size = 331, normalized size = 1.37 \[ \frac {d e^{-\frac {4 a}{b}} \left (2 \sqrt {2 \pi } e^{\frac {6 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )+2 \sqrt {2 \pi } e^{\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )+\frac {\sqrt {b} \left (-\sqrt {-\frac {a+b \cosh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )-\sqrt {2} e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \cosh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+e^{\frac {4 a}{b}} \left (\sqrt {2} e^{\frac {2 a}{b}} \sqrt {\frac {a}{b}+\cosh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+e^{\frac {4 a}{b}} \sqrt {\frac {a}{b}+\cosh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+8 c x \left (\frac {c x-1}{c x+1}\right )^{3/2} (c x+1)^3\right )\right )}{\sqrt {a+b \cosh ^{-1}(c x)}}\right )}{4 b^{3/2} c^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*(d - c^2*d*x^2))/(a + b*ArcCosh[c*x])^(3/2),x]

[Out]

(d*(2*E^((6*a)/b)*Sqrt[2*Pi]*Erf[(Sqrt[2]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]] + 2*E^((2*a)/b)*Sqrt[2*Pi]*Erfi[(
Sqrt[2]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]] + (Sqrt[b]*(-(Sqrt[-((a + b*ArcCosh[c*x])/b)]*Gamma[1/2, (-4*(a + b
*ArcCosh[c*x]))/b]) - Sqrt[2]*E^((2*a)/b)*Sqrt[-((a + b*ArcCosh[c*x])/b)]*Gamma[1/2, (-2*(a + b*ArcCosh[c*x]))
/b] + E^((4*a)/b)*(8*c*x*((-1 + c*x)/(1 + c*x))^(3/2)*(1 + c*x)^3 + Sqrt[2]*E^((2*a)/b)*Sqrt[a/b + ArcCosh[c*x
]]*Gamma[1/2, (2*(a + b*ArcCosh[c*x]))/b] + E^((4*a)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, (4*(a + b*ArcCosh[
c*x]))/b])))/Sqrt[a + b*ArcCosh[c*x]]))/(4*b^(3/2)*c^2*E^((4*a)/b))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {{\left (c^{2} d x^{2} - d\right )} x}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate(-(c^2*d*x^2 - d)*x/(b*arccosh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (-c^{2} d \,x^{2}+d \right )}{\left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x)

[Out]

int(x*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {{\left (c^{2} d x^{2} - d\right )} x}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x, algorithm="maxima")

[Out]

-integrate((c^2*d*x^2 - d)*x/(b*arccosh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,\left (d-c^2\,d\,x^2\right )}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(d - c^2*d*x^2))/(a + b*acosh(c*x))^(3/2),x)

[Out]

int((x*(d - c^2*d*x^2))/(a + b*acosh(c*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - d \left (\int \left (- \frac {x}{a \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} \operatorname {acosh}{\left (c x \right )}}\right )\, dx + \int \frac {c^{2} x^{3}}{a \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} \operatorname {acosh}{\left (c x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*d*x**2+d)/(a+b*acosh(c*x))**(3/2),x)

[Out]

-d*(Integral(-x/(a*sqrt(a + b*acosh(c*x)) + b*sqrt(a + b*acosh(c*x))*acosh(c*x)), x) + Integral(c**2*x**3/(a*s
qrt(a + b*acosh(c*x)) + b*sqrt(a + b*acosh(c*x))*acosh(c*x)), x))

________________________________________________________________________________________